Practical Sequence Partitioning

Thomas Haukland, thomash@ii.uib.no

Submitted for the degree of Candidatus Scientiarum at the Department
of Informatics, University of Bergen, Norway. Written under the sage and

generous guidance of Fredrik Manne, fredrikm@jii.uib.no.

Thomas Haukland, July 2001

Contents

1 Introduction
1.1 Problem formulation
1.2 Motivation
1.3 Notation
1.4 Scope of Experiments

2 Bounds on the optimal solution

3 Probing
3.1 Linear Probe
3.2 Binary Probe
3.3 TreeProbe.

3.4 Notes on performance.
4 Balance-Points

5 Algorithms
5.1 Bisection.
5.2 OM: Dynamic Programming . .
5.3 Nicol’s Algorithm
5.4 MS: Leftist Partitioning
5.5 PA: The Bidding algorithm . .
5.6 HNC: Recursive Balance-points
5.7 Frederickson’s algorithm

6 Experimental results
6.1 Previously published experiments

6.2 Experiments on larger problems

7 Conclusion

10
10
11
12
15

18

20
21
27
31
35
38
40
44

48
48
49

53

List of Algorithms

1 Linear/Greedy probe 11
2 Binary probeo 12
3 Place separator Lo 13
4 Probingin a binary treeo 14
) Bisection Lo oo 23
6 Nicol's algorithm L. 34

1 Introduction

1.1 Problem formulation

A common problem associated with parallel computing is load-balancing.
When a task is divided into sub-tasks and distributed among several proces-
sors, the total time needed to solve the task is the time used by the most
heavily loaded processor. Therefor, one of the primary goals of load-balancing
is to minimize the load of the most heavily loaded processor. Without any
constraints on the sub-tasks or processors, this problem is known to be NP-
hard|8].

When certain restrictions are placed on sub-tasks or processors, varieties
of the problem arise which may be solved in polynomal and even linear time.
In this work we consider the case were every processor has the same capacity
and each sub-task is associated with a positive number expressing the amount
of time needed to solve the sub-task at any processor. Also, if sub-task i is
assigned to processor j, sub-task ¢ + 1 must be assigned to processor j or
j+ 1. If there are p processors, this means that the original sequence of sub-
tasks will be divided into p continuous partitions. Definition 1 formalizes the

problem, and practical applications are discussed in Chapter 1.2.

Definition 1 The MinMax-problem: A sequence of
n numbers is to be partitioned into p continuous inter-
vals, so that the cost of the most expensive interval is

minimaized.

The cost of an interval is the sum of the numbers in the interval. Consider

this sequence of 8 numbers partitioned into 4 intervals:
[23]61]224]5]

The most expensive interval here is the third, consisting of 2,2 and 4, and

having a cost of 8(which is called the bottleneck-cost).

5

This problem was first discussed as the path-partitioning problem, and
solved by Becker, Perl, and Scach in 1982[2]. Their algorithm worked on
trees', and used O(p3n) time to solve the problem. It is also known as
the chains-on-chains problem and Bokhari and Igbal shows how a similar
problem, taking into account communication costs between the p intervals,
can be transformed to the MinMax-problem with a simple O(n) operation[5].
Bokhari also published an O(n3p) algorithm[4] solving the problem in 1988,
and extensive research has been done on the subject since.

Very few experimental results from actual implementations of the algo-
rithms are published. This work is an attempt to implement a representative
selection of the existing algorithms, based on performance and approach.
First, in Chapter 2, some important bounds are discussed, which are later
used to optimize the algorithms. In Chapter 3, a technique called probing
and different variants of it is introduced. This technique is used by several
of the algorithms. Chapter 4 defines a property of the MinMax-problem
called a balance-point. Finding balance-points is at the core of some of the
algorithms.

Chapter 5 treats each algorithm separately, discussing it’s strengths and
weaknesses, and possibilities of improvements. Afterwards, in Chapter 6,
experiments are performed on all of the implemented algorithms, comparing
efficiency on problems of various sizes. A summary of the results is presented

in Chapter 7.

1.2 Motivation

As an example of the MinMax-problem, consider an image consisting of n xn
pixels, where an operation has to be performed on every pixel of a specific
color, and the result of this operation depends on the color of the adjacent
pixels. When distributing this image among processors for parallel execu-
tion of the operation, one way of implicitly minimizing communication costs

between processors is to assign countinous row-stripes of the image to the

LA sequence is the same as a path, which in turn is a special kind of tree.

processors. The cost of each task(a row) will be the number of pixels of the

specific color in that row. See Kutluca et.al.[10] for a detailed discussion of

image-space decomposition.

Other applications include signal-processing[4] and computations/simulations

associated with a communications network[13]. Pinar and Aykanat[15] also

propose to apply the problem to parallelization of sparse matrix vector mul-

tiplication.

1.3 Notation

The following notation will be used throughout this work.

Symbol Value Description

n number of elements in the se-
quence.

D number of partitions.

S; separators or delimiters. sq =
0,5 = m,8-1 < s; and s; €
{0,n} when 0 <i < p.

W; value of element number 7.

Wi fc;i We,2<j cost of elements ¢ through j — 1.

w Wss, = Won = | total cost of all elements in the

o Wi sequence.
s a partition defined by s, s1, ..., 5p.
w(m) max(Ws, , ,,0 < i < | the cost of the most expensive in-
D) terval in 7.

Wopt min(w(7m;)Vi) The cost defining the optimal par-
tition.

T; ;-:1 W; T is the prefix-sum array.

1.4 Scope of Experiments

All algorithms are implemented 2 in the C programming language, on the
Linux operating system. The experiments have been carried out on an Intel
Celeron running at 768 MHz, with 128KB internal cache and 128MB RAM.
Performance is measured by two variables; time and iterations. Time is in
microseconds, and starts after the problem have been read from file. The
number of iterations is a counter which is incremented each time a loop of
the program is executed. This number is similar to the asymptotic running
time, as it does not take into consideration the constant factors of the im-
plementation. To get stable execution times, the algorithms have been run
several times on the same problems, and only the best(shortest) execution
times have been used.

If not noted otherwise, the numbers of the sequences are randomly gen-
erated. Only 64-bit integers have been used. The size of the problems are
restricted by the amount of memory on a given computer, and no sequences

larger than 1048576 numbers have been used.

2The source is available at http://www.ii.uib.no/~ thomash /hf/source/

8

2 Bounds on the optimal solution

The upper and lower bounds presented in this chapter will be used to im-
prove the performance of several of the algorithms which solve the MinMax-
problem.

If the cost of the most expensive interval, the bottleneck cost, is known,
the p delimiters can be placed by a greedy algorithm taking O(n) time.
Iterate over the sequence, summing elements, inserting a delimiter before
the element which will make the sum exceed the bottleneck value. Hence,
the actual placement of the delimiters is irrelevant, the bottleneck cost is
a sufficient solution to the MinMax-problem. Since any algorithm needs to
examine each element in the sequence, adding an O(n) operation does not
affect the asymptotic running time. The greedy algorithm is discussed further
in the next chapter.

The lowest possible value of the optimal solution is W/p. This means
every interval has the same cost, and no better partitioning exists. Notice
that if the largest element, W4, is larger than W/p, this is a lower bound
on the optimal solution.

The best known upper boundary® is W/p + Wy,. To see this, use a
greedy approach to partition the sequence. Add elements to the current
interval until adding another one means the cost of the interval exceeds or
equals W/p, then add one more. If the p—1 first intervals cost W/p or more,
the last interval can not cost more than W/p, therefore the bottleneck cost

can never be more than W/p + W,,4,.

3Choi and Narahari[6] proposed 2W/p as an upper boundary, but this only applies
when Wi, is less than W/p, and then W/p + Wypa, < 2W/p.

9

3 Probing

Several algorithms for solving the MinMax-problem use a method for testing
whether a value defines a valid partitioning the sequence, called a probe. The
probe takes at least three parameters; a representation of the sequence, the
number of intervals(p) and a value. TRUE or FALSE is returned depending
on whether the value defines a valid partitioning or not. Consider p = 4 and
the sequence:

S=[23612245].

A probe given S, p = 4, and value = 5 should return FALSE, since it is
impossible to partition S into 4 intervals where the maximum cost is not
more than 5. Increase the value to e.g. 9 and probe should return TRUE.
Note that a probe will return TRUE for all values greater than or equal to the
optimal solution(8 for p = 4), and FALSE for all values less than the optimal
solution. The rest of this chapter will discuss different probe-algorithms in
detail.

3.1 Linear Probe

A greedy probe-algorithm, Algorithm 1, iterates over the sequence once, in-
serting a delimiter whenever the running sum exceeds the value in question.
At the end of the sequence, if less than p delimiters has been inserted, the
value is a feasible solution. The running time of this algorithm is O(n). Algo-
rithm 1 makes it possible to probe only a part of the sequence. The sequence
will be probed from the index given by the parameter ‘start’, until the index
given by ‘stop’ is reached. How this can be useful is discussed in Chapter 4.
Although this is useful and feasible for the following probe-algorithms, the
details have been omitted for simplicity of reading. Obviously, if a number in
the sequence is greater than the probing-value, FALSE should be returned.
For simplicity, the code to handle this has been omitted.

As an example of how the greedy probe works, consider giving it S as

described above, p = 3, value =9, start = 1, and stop = n. The probe will

10

then insert delimiters like this:
S=1[23]612|24]|5]

Since the last delimiter is inserted without including the last element, FALSE

is returned.

probe(sequencel|, start, stop, value, intervals)
p_left < intervals
sum <0
for i = start to stop do
sum <— sum + sequenceli
if (sum > value) then
p_left<+p left—1
sum < sequenceli]
end if
end for
if (p_left > 0) then
return TRUFE
else
return FALSE
end if

Algorithm 1: Linear/Greedy probe

3.2 Binary Probe

By precomputing the prefix-sum-array of the sequence, the asymptotic run-
ning time of each probe can be reduced for some values of p and n. Using

the sequence S from above, the prefix-sum-array T would look like this:
T =125, 11, 12, 14, 16, 20, 25].

The cost of the interval containing elements S through Se: [6, 1, 2, 2] is
then given by 75 — 71, = 16 —5 = 11. In general, let W; be the cost of element
i, and W; ; the cost of W; + Wi + ...+ W;,0 < ¢ < j <n. If T is set to 0,

W, ; can be expressed as T; — T;_;.

11

With T available, it is possible to perform a binary search for the position
of each delimiter as described in Algorithm 3. The pseudo-code for the binary
probe is given in Algorithm 2.

Note that if 7 is returned from ‘place separator’, the element with index
¢ in the sequence belongs in the interval to the right of this delimiter. If
‘place separator’ is called with e.g. the above T" and probe-value 15, then 6

is returned, indicating this placement of a delimiter:
[23612[245]

If a delimiter is placed in position n+1, the probe-value was used to partition
the sequence into p or fewer intervals, and TRUE is returned. Else, the last
interval did not contain element n, and the probe-value does not define a
valid partitioning, hence FALSE is returned.

This changes the complexity of a probe from O(n) to O(plogn) which is
better when p = o(n/logn). Note that it takes O(n) time to construct the
prefix-sum-array 7', but this cost is negligible if the probe is executed often

enough.

probe(T|[],value,intervals)
sum < value
for : =1 to intervals do
ix < place _separator (T[], sum)
if (iz =n+1) then
return TRUE
end if
sum < value + T[iz — 1]
end for
return FALSE

Algorithm 2: Binary probe

3.3 Tree Probe

Similar to the prefix-sum-array is a binary tree having the numbers of the

sequence as it’s leaves and the sum of all the leaves as the root. The probe

12

place separator(T][|,value)
low <0
high < n+1
while ((high — low) > 1) do
middle < (high + low)/2
if (T'[middle] > value) then
high < middle
else
low < middle
end if
end while
return high

Algorithm 3: Place separator

using this tree will place each of the p delimiters by working it’s way from

the root to the correct leaf in a fashion very similar to ‘place separator’.

The pseudo-code for this algorithm is listed in Algorithm 4. If the weight
of the left child of the current node, together with the ‘carry’, is less than the
sum defining the current delimiter, the current interval will have room for all
the leaves below the left child. The search continues on the right child, to find
out if there is room for even more leaves. Else, if the weight of the left child
exceeds the ‘sum’ and ‘carry’, this means that the current delimiter should
be placed somewhere between the leaves of the left child. If the current node
is a leaf, the placement of a delimiter has been found, and ‘sum’ is updated

for the search of the next delimiter which will start at the root again.

This approach has the same complexity as the binary probe, O(plogn),
but has slightly higher constant factors, and is consequently not used in any

experiments in the following chapters.

Han, Narahari, and Choi[9] suggested building p binary search-trees, each
containing n/p leaves, which would make the running time for each probe
O(plogn/p). This is a minor asymptotic improvement, and has not been

tested in this work.

13

probe(tree,value,intervals)
sum < value
for + = 0 to intervals do
carry < 0
node < root
while (node # leaf) do
if (left_child(node).weight 4+ carry < sum) then
carry < carry + left__child(node).weight
node < right_child(node)
else
node < left_child(node)
end if
end while
sum <— carry + value
end for
if (carry = root.weight) then
return TRUFE
else
return FALSE
end if

Algorithm 4: Probing in a binary tree

14

3.4 Notes on performance

The binary probe is asymptotically faster than the linear when p = o(logn).

However, since the data the linear probe needs is most probably already in

n
logn

reality. l.e. the constant factors of the linear probe are smaller than those

in

the cache, this intersection of performance occurs before p reaches

of the binary probe. This is illustrated by Figure 1. Theoretically, the two
probes should perform equally when p = n/logn = 2048/11 = 186, as is
the case in the first graph depicting the iteration count?. Beacuse of the
smaller constant factors, the performance of the linear probe exceeds the
binary probe already for p greater than 120, when performance is measured
in time. The graphs are obtained by running multiple probes for each value
of p. A smart probe will determine which of the binary or linear method it
should use, depending on the value of p and n.

Although binary and tree probe have the same complexity(O(plogn)),
the binary probe has lower constant factors. Figure 2 is a comparison of the
three probes discussed in this chapter. As can be seen from the graph, the

tree-probe loses more and more to the other two, as p grows larger.

4See Chapter 1.4 for a description of how this is measured.

15

Iterations, n=2048

90000 T | T T T T T
Ogn) probe

80000 O(p’log n) probe -
,, 70000 |- T
& P
3 -
= 60000 |- .
E /////
= 50000 |- .

40000 |- -

30000 1 ! ! ! ! ! !

80 100 120 140 160 180 200 220 240
p
Time in microseconds, n=2048
5000
5) plrobe T T T T T -

w 4500 F ----- O(p'log n) probe T4
< .
= -
3 4000 7 -
> -
2 3500 -7 —
kS s
E 3000 |- -
g e
é 2500 = —
& 2000 F -7 -

1500 | | | | | | |

80 100 120 140 160 180 200 220 240

Figure 1: A comparison of the binary and the linear probe.

16

Time in microseconds

Time in microseconds, n=10000

60000 | E— | T | | |
—_ %;near / Gret()ady probe B
————— inary probe]
50000 ... Tree—grcr))be T
40000 | -
30000 - .
20000
10000 F=
0
100 200 300 400 500 600 700 800 900 1000

Figure 2: A comparison of the different probing-algorithms

17

4 Balance-Points

Finding so-called balance-points is central to several of the algorithms pre-
sented in this text. To help explain the principle, it is useful to define the
function g(i, 7,1) as the cost of the most expensive interval in an optimal par-
titioning of [W;, Wiy1, ..., W,] into [intervals. The solution to the MinMax-
problem is then given as g(1,n,p).

Definition 2 explains a balance-point using the ¢() function, and the probe

discussed in Chapter 3.1.

Definition 2 :* us the k’th balance-point if:

probe(i*,n,g(1,i* — 1,k),p— k) = FALSE

and

probe(i* + 1,n,9(1,7*,k),p— k) =TRUE

Le. g(1,i* — 1, k) does not define a valid partitioning of [W;«, ..., W] into
p — k intervals, but g¢(1,4*, k) defines a valid partitioning of [Wi« 1, ..., W,,]
into p — k intervals. Since g(i,7,1) is a monotonically increasing function of

4, the balance point exists and is unique®.

5See Manne and Sgrevik[12] for a detailed discussion.

18

Properties of balance-points

Han, Narahari, and Choi|9] first discussed the following property of the gen-

eralized balance-point:

Theorem 1 If i* is the k’th balance-point,

g(la nap) = mln{g(17 i*a k)a g(Z*a n,p— k)}

The idea is that the balance-point element tips the scale of where the most
expensive interval is. If element 7* is partitioned with the first k& intervals,
this is where the most expensive interval is found, otherwise it will be among
the p — k last intervals. The optimal solution is minimized on cost, so both

options are checked and the smallest is chosen.

19

5 Algorithms

In this chapter, several different algorithms for solving the MinMax-problem
are presented. Although there exists other algorithms, they have been left
out on purpose, either because their asymptotic running time was very poor,
or because the approach was too similar to one of the presented algorithms.
After the introduction of each algorithm follows an attempt to increase
its efficiency, accompanied by a graph illustrating the results.
Table 1 lists the asymptotic running times of the algorithms which are

discussed in this chapter.

Algorithm | Asymptotic running time
Frederickson® O(n)

HNC O(n+ p'te)

OM O((n —p)p)

Nicol O(p?log® n)

PA O(np?)

MS O((n — p)plogp)
Bisection O(plognlog Winaz)

Table 1: Asymptotic running time of the implemented algorithms

6The algorithm implemented in this work have running time O(nloglogn).

20

5.1 Bisection

This algorithm is due to Igbal[11]. Using the upper and lower bounds on the
optimal solution discussed in Chapter 2, it is possible to perform a binary
search for W,,. Recall from Chapter 3 that a probe returns TRUE for all
values higher than or equal to the optimal, and FALSE for all lower values.
After a completed probe on the value of the upper boundary and the lower
boundary divided by 2, this value defines a new upper boundary if the probe
returned TRUE, or a new lower boundary if the probe returned FALSE.
To illustrate one iteration of the algorithm, consider the sequence S from
Chapter 3:

$=[23612245].

Let p = 4. The upper boundary from Chapter 2 is (S; + ...+ Sg)/4+6 = 13
rounded upwards, and the lower boundary is (S; + ... + Sg)/4 = 6 rounded
downwards. The first value to be probed is (13+6)/2 = 10, which will return
TRUE. 10 now defines the new upper boundary, and the process is repeated
by testing (10 + 6)/2 = 8.

It has been assumed that this technique could not achieve exact accuracy
when dealing with real numbers. The search has simply been terminated
when the difference between the upper and lower bounds is below a predefined
€. As will be shown, it is possible to get perfect accuracy without increasing

the asymptotic running time.

The Algorithm

To avoid aborting the search before the optimal solution has been found, we
modify the probe-algorithm, so that it provides a way of mapping arbitrary
probe-values, to the closest value arising from the sequence. The optimal
solution will always be in the interval between the lower and upper bound.
Using this modified probe, the upper and lower bounds will eventually take
on the same value, and the optimal solution is found. The pseude-code for the

algorithm is listed in Algorithm 5, and is explained in the next paragraphs.

21

We establish the upper boundary by setting the variable high to %+Wma$
and the lower boundary by setting the variable low to %. The probing value

W and an attempt is made to partition the sequence

middle is set to
into p intervals, none of which cost more than middle, using a modified probe.

The probe function performs a binary search” to locate the position of
each delimiter, as defined by middle. When one is found, two variables
are updated; if the cost of the current interval exceeds real cost, update
real_ cost, and if if the cost of the current interval including the “next” element
is smaller than nezt cost, update next_ cost.

When a probe is completed, real cost will hold the cost of the most
expensive interval if middle defined a valid partitioning. Else, middle will
have to be increased to at least next cost to have a chance of defining a valid
partitioning.

If the probe finds that middle defines a possible partitioning, it returns
TRUE and real_cost, and high is updated to the value of real cost. Else, if
the middle was too small to define a partitioning, FALSE and next cost is

returned, and low is updated to real cost.

When low = high, the optimal partitioning has been found.

Asymptotic running time

Since the search interval is of size O(W,,4,) at the start, and is halved at each
iteration of the outer loop, the binary probe procedure is called log W,z

8

times °, in which place separator (O(logn)) is called p times, yelding a total

complexity of:

O(plognlog Wiaz)

This is difficult to compare to other algorithms, because of the factor

"In the actual implementation, the smart probe referred to in Chapter 3.4 is used to

ensure that the fastest probe algorithm is used.
8The log Wyas factor is slightly smaller, since high is always set to real boundary

which is smaller than or equal to middle.

22

Bisection
low < Wig/p
high < low + Wz
while low < high do
middle « (low + high)/2
(result, tmp) < binary _probe(middle)
if result = TRUE then
high < tmp
else
low < tmp
end if
end while
return high

Binary probe
sum <— value
increase < MAXINT
real _cost + 0
previous iz <0
for i =0 to p do
iz < place _separator(sum)

if (T'[iz] — T[previous_iz]|) > real _cost then

real _cost = T|iz]| — T[previous iz
end if

if (T[iz + 1] — T[previous_izx]) < increase then
increase < Tlix + 1] — T[previous_ix]

end if
if iz = n then
return (TRUE, real cost)
end if
sum « value + T[ix]
Previous _iT <— ix
end for
return (FALSE, increase)

Algorithm 5: Bisection

23

log Winae which is not present in other running times. In practical applica-
tions though, this factor will never be larger than the number of bits used to
represent the numbers. Two important exceptions to this assumption exists.
First, if floats are used, it may be as big as log10?") = O(2%), where z is
the number of bits used to represent the exponent of the float. Second, if a
number-implementation with variable number of bits, like the GMP library?,
is used, there is no limit to this factor.

To find a running time independent of data size, imagine all the possible
values arising from one sequence, Zi:i W, 0 <2 < j <n,sorted in an array
C'. The size of this array is then (’2‘) = O(n?). At the start of the bisection
algorithm, high and low will point to somewhere inbetween the elements of
C. When muddle is probed, and either high or low is updated, the interval
containing possible solutions will shorten, and at least one element of C will
be excluded.

low =C, C,<middle {C, high =C_
[c,c,c,/c,c.c.c,c,C, C,l

Figure 3: If probe(middle) returns TRUE, high is set to Cs, else low is set
to 04.

This analysis leads to an asymptotic running time of:
O(n?*plogn)

Improvements

The two improvements presented here can be applied to all algorithms based

on probing.

9GNU Multiple Precision: http://www.gnu.org/software/gmp.html

24

First, we keep track of where each previous probe placed delimiters. If
probe returned TRUE, the p delimiters placed will serve as upper bounds for
the optimal position of delimiters for subsequent calls to probe. Instead of
setting 0 as the lower bound for each delimiter, we use the position of the
previous delimiter as this bound. The effect of this modifications is minor,
but can be compared to building p binary search trees, as discussed in chapter
3, in that the running time of a probe will converge on O(plogn/p). Note
that this only applies to the binary probe.

Another improvement to the probe, is to check that the probing-value still
defines a possible solution. After having placed delimiter £ at position i, if
(Wi+...4+W,,)/(p—k) is greater than the probing-value, then we can abort the
probe and return FALSE. This follows as a corollary from the upper bound
explored in Chapter 2: If the mean cost of the remaining intervals exceeds
the probing-value, this probing-value can not define a valid partitioning of
the sequence into p intervals. This improvement apply to both the linear and
the binary probe.

Figure 4 shows the performance of the bisection-algorithm before and
after the improvements have been implemented. Since the most signifi-
cant improvement only applies to the binary probe, values of p larger than
n/logn = 4096 does not lead to much difference in performance, since the

linear probe is then used.

25

Time in microseconds, n=65536

30000 T T T T T T T T T

— Bisection ___)
----- Improved Bisection

25000

20000

15000

10000

Time in microseconds

5000 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

p

Figure 4: Comparison of bisection with and without minor improvements for

small values of p.

26

5.2 OM: Dynamic Programming

Anily and Federgruen|l| first presented a recursion which can be used to
solve the MinMax-problem with dynamic programming. Recall the function
g(3, j, k) from Chapter 4, and notice that g(¢,j,1) is W; + ... + W; for 0 <
1 < j<n. Fork>1we get:

9(1,5,k) = min {max{g(1,1,k = 1), (I, j, 1)}}
LY

This means testing all the possible positions for the (£ — 1)’th balance-
point, and choosing the one leading to the smallest cost. Using this recur-
sion, it is possible to construct the p X n array consisting of the solutions of
9(0,7,k),0 < j <n,0 < k < p, with a time complexity of O(pn?). To find
each ¢() value, we need to look up and compare n previous values.

To illustrate, the array arising from the sequence S = [23612245] when
p = 4 is presented in Table 2. The dynamic programming algorithm, AF,
will fill out this array one row at a time, from left to right, until g(0, n, p) is

found at the bottom right of the array.

p/ni|1|2| 3| 4| 5| 6| 7] 8
1 2|5 (1112|1416 |20 | 25
2 213 6| 7| 9|11 11|13
3 213] 6 6 8|11
4 23| 6 6| 6| 8

Table 2: The optimal solution, g(1,8,4) = 8, is found at the bottom right.

A refined dynamic programming algorithm

Choi and Narahari[6], and independently Olstad and Manne[14] discovered
that it is not necessary to check all possible elements to find a balance-point.

The key observation, which they use to develop improved algorithms, is that

27

the £’th balance-point of the sequence [Si, ..., Sj, Sj+1] is located to the right
of the k’th balance-point of the sequence [Si, ..., Sj].

The OM-algorithm fills out the array of g()-values in the same fashion as
the AF-algorithm: one row at a time from top to bottom, from left to right.
For k =1, ¢(0,7,k) = T[j]. For k > 1, ¢g(0,4,k) is calculated by keeping
track of where the k — 1’th balance-point was located for g(0,j—1, k). Let ¢*
be the k£ — 1’th balance-point for the problem ¢(0, 7 —1, k). To find ¢(0, j, k),
increase ¢* until it meets the criteria for a balance-point, as specified in
Definition 2. When the balance-point has been found, the value of ¢(0, j, k)
is found by using Theorem 1. According to this, ¢(0, j, k) = min{g(0, :*, k —
1),9(i*,7,1)}, which is calculated in constant time since ¢(0,*,k — 1) is
already known, and g(i*,7,1) = T[j] — T[i* — 1]. Another observation used
to reduce the complexity of the algorithm, is that every interval has room
for at least one element. I.e. it is not necessary to compute the value of
g(0,7,k) for j < k and j > p — k. Table 3 illustrate which values of g() the
OM-algorithm calculates.

p/ni||1(2| 3| 4] 5| 6|78

1
2
3
4

Table 3: The OM-algorithm only calculate p(n — p + 1) values of ¢(0, 7, k).

Asymptotic running time

For each £,0 < k < p, ¢g(1,4,k) is calculated for k£ < j < n —p+ k. For
each ¢(), the balance-point is found. Since the total cost of finding all balance
points for a fixed & is O(n—p), this can be amortized into the cost of iterating

through the sequence for each k. The total time complexity is then:

28

O(p(n —p))

Improvements

By carefully analyzing the bounds explored in Chapter 2, we can limit the
number of g()-values we need to calculate. Notice that for any &, we only
need to know g¢() for the k£’th balance-point, since this value will be used when
calculating g()-values for the k£ + 1’th row. The upper and lower bounds on
the optimal solution, implicitly limits the position of delimiters, hence also
the position of balance-points. Instead of starting at index £ at each row, we
start at the index indicated by the sum (T'[n]/p)(k — 1). Le. for each k, skip
as many elements as possible, without the cost of these exceeding T[n]/p.
Do the same operation backwards from the end of the row, to find out when
we can stop. In general, we can skip p — k intervals of cost Win]/p at the
end of each row!?.

This improvement is an extension of the observation mentioned above,
that each interval has room for one element. The increase in performance
is dependent on the spacing of data in the sequence, and the asymptotic
running time remains unchanged.

Figure 5 illustrates the effect of the this improvement. As p grows closer
to n, the running time of both algorithms decrease and finally becomes linear

when p = n.

0The implementation figures out the bounds for the balance-points in an O(n)

preprocessing-step and stores them in an array.

29

Time in microseconds

Time in microseconds, n=1024

120000 T

100000 [~
80000
60000
40000 [~

20000

oM | | |
Improved OM

0
0 100

200 300 400
p

200

600 700 800 900

Figure 5: The OM-algorithm with and without improvement.

30

5.3 Nicol’s Algorithm

Nicol’s algorithm|13] starts by performing a binary search for the first
balance-point, 7%, which is described in Chapter 4. I.e. the smallest ¢ for
which probe(S,i + 1,n,9(1,4,1),p — 1) = TRUE. Recall from Theorem 1,
that when this element(:*) is found, the solution to the MinMax-problem,
9(1,n,p), is min{g(1,7*,1), g(i*,n,p — 1)}. Nicol stores the cost of the first
interval, ¢(0,4*,1), as a possible solution. The solution to g(i*,n,p — 1) is
found by repeating the process on this sub-problem. After p costs have been
stored, the smallest one is the optimal solution to the MinMax-problem.

Figure 6 illustrates the the first step of the algorithm.

g(1,n,p): i"=4
s<S, S, S,S,S. S, S, S, ... S

g(1,4,1)
g(4,n,p-1)

Figure 6: After i* has been found at index 4, the cost of g(1,4,1) is stored,

and g(4,n,p — 1) is solved by repeating the procedure on this sub-problem.

Asymptotic running time

To find each balance-point, a binary search is performed, using a probe in
each step. The probe uses O(plogn) time, the binary search uses O(logn)
time, and since this has to be repeated p times, the total asymptotic running

time is:

o(p* log? n)

31

Improvements

When testing whether element ¢ is the £’th balance-point, the probe only
needs to consider the sub-sequence [S;...S,], as noted in Chapter 4. Figure
7 illustrates what happens when the algorithm tries to locate the position
of the second balance-point. The sequence Ss...S,, is probed with the value

g(4,7,1) as a step in the binary search for 7%, the second balance-point.

g(4,n,p-1): |

|
S=[S, ...S, S. S. S,S,... S|

‘
probe S,8,I|’ 4,; ,1 ,p
(’71) (g()

Figure 7: The sequence Ss...S,, is probed with the value g(4,7,1).

The improvements to the probe discussed in Chapter 5 are also imple-
mented.

By keeping track of the lowest value probed successfully and the highest
value probed unsuccessfully, it is possible to avoid many unnecessary probes.
If probe returned TRUE for a value, it will return TRUE for all values higher
than this. Conversely, if probe returned FALSE for a value, it will return
FALSE for all values lower than this. This can be applied to succeeding
probes on sub-sequences, since Nicol ensures either that previous delimiters
are placed optimally, or that the optimal solution is already found. By con-
tinuously narrowing the upper and lower bounds for probing-values, Nicol’s
uses a parametric search technique. The behavior of the algorithm after this
change is similar to the bisection-algorithm of Chapter 5.

Since this improvement is dependent on the actual values in the sequence,
rather than n or p it is difficult to prove any impact on the asymptotic running

time, but as the graphs will show, it has a significant practical effect.

32

Time in microseconds, n=10000

70000 T T T T T T

| |
— Nicol’s)
60000 - -—---- Nicol’s, only problngbsub—sequences -
es

------ Nicol’s, avoiding pro
50000

40000 [~
30000 -
20000

Time in microseconds

10000 -

100

Figure 8: The performance of Nicol’s algorithm.

Figure 8 illustrates the effect of the improvements discussed above. With
all improvements implemented, the performance of the algorithm does not
seem very dependent on the value of p.

The pseudocode in Algorithm 6 details the modifications needed. (See
Chapter 2 for pseudocode of binary probe.)

33

Make prefixsum-array T’
lowest _cost <+ MAXINT
known_low < Tn|/p
known__high < known_low + W,4s
prev_ iz <0
for 7 =0 to p do
low « prev_iz —1
high < n
repeat
middle < (low + high)/2
sum < T|middle] — T[prev_iz|
if (sum > known_high) then
high < middle
else if (sum < known_low) then
low < muiddle
else if (probe(T, middle + 1,n, sum,p — 1)) then
high < middle
known__high < high
else
low < muiddle
known_low < low
end if
until ((high — low) > 1)
lowest _cost < min(lowest__cost, T[high] — T[prev_ix])
end for
return lowest cost

Algorithm 6: Nicol’s algorithm

34

5.4 MS: Leftist Partitioning

Becker, Perl, and Scach|2| first developed a shifting algorithm which solves
the MinMax-problem in O(p®n) time. A shifting algorithm places delim-
iters(or cuts), and moves them to acheive better and better partitions. Al-
though Becker et. al. only discussed partitioning trees, this also applies to
sequences, or paths, since these are a special kind of trees. Becker and Perl|3|

gave an overview of shifting algorithms.

Manne and Sgrevik[12] improved the running time from O(p*n) to O((n—
p)plogp) by introducing a binary heap.

The algorithm

The idea is to find the most expensive interval, and moving the leftmost
delimiter one position to the right until this is not the most expensive interval,
and repeating the process until it does not produce a cheaper partitioning.
To find the most expensive interval in constant time, they maintain a binary
heap of the costs of the intervals. They show that this will produce an optimal
partitioning if the partition the algorithm started with is what they call a
leftist partition, meaning all the delimiters are to the left of their optimal
placement. They propose to simply place the delimiters so that each of the

p — 1 first intervals contains one element to ensure a leftist partition.

Asymptotic running time

In the worst case, all the p delimiters have to be moved (n — p) places, and
for each move, the heap containing the p costs has to be updated, O(logp),

for a total complexity of:

O((n — p)plogp)

35

Improvements

By using the lower bound %, it is easy to construct a leftist partition by
greedily filling up intervals. This partition will be closer to the optimal solu-
tion than what the authors suggest starting with, and thus saves iterations.

Assume the weight of the first interval is 6; < W/p, using the initialization
scheme discussed above. The second interval can then have weight 6, <
(W —#6)/(p— 1) without placing the second delimiter, s,, to the right of it’s
optimal position. The proof is by contradiction. If s, is placed to the right
of its optimal position, (6; + 6;) > %. If 6; and 6, take on their largest

possible values, this means:

W
p

2W
>
p

s

W —
+
p_

20—)W S 2W
plp—1) p
LW
p p
The proof can be extended to all #’s by induction. This improved initializa-
tion further increases the performance of the MS-algorithm. However, since
the effect of this is dependent on the values of the data, it does not have any
impact on the asymptotic running time.

Figure 9 demonstrates the difference in performance, caused by the im-
provements. When p is very high, the initial placement of delimiters is almost

optimal, hence very few adjustments have to be made.

36

Time in microseconds, n=1024

250000 T T T T T T T
w | o MS with initialization
'g 200000 —
o
<
.g 150000 —
g
g 100000+ /. \ |
g
- 50000 [—

0 R | | | |
0 100 200 300 400 500 600 700 800

Figure 9: When p is very high, the initial placement of delimiters is almost

optimal, hence every few adjustments have to be made.

37

5.5 PA: The Bidding algorithm

This is another shifting algorithm(se chapter 5.4), by Pinar and Aykanat|15],
which starts with W/p as the possible solution, and places delimiters greedily
until it finds out that this is impossible. The solution is then updated to the
next lowest possible, previous delimiters are updated, and this is repeated
until all delimiters are placed, and the current solution is returned as the
optimal solution.

Figure 10 illustrates how the algorithm works on an example sequence.
If p = 4, the lower bound on the optimal solution is W/p = 15. After having
placed two delimiters according to this bound, it is clear that the rest of the
sequence can not be partitioned with this bound. One of the delimiters must
be moved, and the one leading to the smallest increase is chosen. The first
delimiter is moved 1 position to the right, leading to a new bound of 17. The
next delimiter is moved to include the next two elements, and the third and
last delimiter is placed before the element of weight 7, and 17 is returned as

the optimal solution.

W=58 p=4 W/p =15

[25132‘417“54383731]

— |
33/2>15

Figure 10: After the second delimiter has been placed, the current bound is

increased.

Although very similar to Manne and Sgrevik’s algorithm[12], this ap-
proach eliminates the need of a heap to store costs in, thus saving an O(logp)
factor of the running time. However, after updating the current cost, they
need to check all subsequent intervals, possibly without moving any delim-

iters. This adds an O(p) factor in comparison to Manne and Sgrevik. In

38

theory, the difference is that while Manne and Sgrevik shrinks the most ex-
pensive interval, Pinar and Aykanat expands the interval which leads to the

smallest increase of the current cost.

Asymptotic running time

Since all the delimiters are moved only in one direction, no more than pn
moves are performed. In the worst case, an increase of the current solution
might lead to O(p) iterations where no delimiters are moved. This leads to

a total asymptotic running time of:

O(p°n)

Since the algorithm already uses the lower bound from Chapter 2, it is

not possible to use this to improve it.

39

5.6 HNC: Recursive Balance-points

Han, Narahari, and Choi[9] developed this algorithm, which is very similar
to Nicol’s[13]. Binary search is used to find 7*, the k’th balance point!'. For
each 7 tested, a recursive call solves the min-max problem on the sequence to
the left of 7, yielding a solution W,, and W, is used to probe'? the sequence to
the right of 4. If 7 is the £’th balance point, determined by applying Definition
2, the sequence to the right is solved recursively(W,), and compared to W, to
find the optimal solution. Figure 11 illustrates what HNC does after finding
7*, the k’th balance-point.

g1, n, p) =min{W, , W }
SIS S .. S ..S
| \

W_=9g(1,1,k) W, =9g(", n, p—k

n

Figure 11: After * has been found, HNC recursively computes W, =
g(i*,n,p — k), and returns min{W,, W, } as the optimal solution.

Asymptotic running time

The authors suggest an elaborate scheme to pick k’s, so that the asymptotic
running time is minimized. Using this scheme, they show that the running

time is

1
O(n + plog’n % x ¢V legploglogn)

1Tf k = 1 the algorithm is simply a recursive version of Nicol’s.
12, binary search-trees are used for probing. The running time of a probe is O(plog %)

40

for some constant c. Asymptotically this is the same as

n+plog P lloglogp \/logploglogp)

since it is true when n < p?, and since O(n) will dominate when n > p2.

This expression can be reduced to
O(Tl +p1+6)

for any small € > 0.

Notes

Although the choice of the initial £ has a significant impact on the perfor-
mance of the algorithm, the authors do not provide an exact method for

doing this. They give these equations to describe k:

- = O((2logny)

: | logp
=0 ——
J (log logn)

. The implementations experimented with here pick the initial £ as

and

p

(logn) \/logp/loglogn

In fact, the optimal choice of the first £ is dependent upon the actual
values of the sequence, as well as p and n. To find the optimal value of the
first k for a given problem, it is necessary to experiment. Figure 12 illustrates
the change in performance when choosing different initial k£’s. The formula
above chooses 14 as the first k.

To choose k’s after the first one, exact formulas are given by Han et. al.

These formulaes grows very slowly with n and p, and the result is that
the depth of the recursion tree is kept at a minimum. For the problems

experimented on in this work, the HNC algorithm never recursed deeper

41

Time in microseconds, n=10000, p=1000
340000

320000
300000

— ' HgNC

g 280000
B 260000
240000
220000

200000 | | | | | | | | |
) 10 15 20 25 30 35 40 45 50 55

Figure 12: The effect of which balance-point is chosen first.

than 2 levels. Even so, recursion cost a lot using functional programming
languages, and the performance of the algorithm would probably benefit

from unrolling the recursion.

Improvements

It is possible to reduce the number of probes, by checking if the value to be
probed with is in < %, % + Winae >. If not, it is possible to predict the

result of a probe without executing it.

From Figure 13 it should be clear that the above mentioned improvement
makes a substantial difference to the performance of HNC. Notice that the
graphs for HNC and recursive Nicol’s are identical until p > 30. This is

because k increases with p, but isnt larger than 1 until p reaches 30.

42

140000
120000
100000
80000
60000
40000
20000
0

Time in microseconds

Time in microseconds, n=1024

HNC, first k is 1(Re|cursive Nllcol’s)
HNC, first k is 1, avoiding probes

HNS .
HNC avoiding probes

P

Figure 13: The performance of variants of the HNC algorithm.

Implementation

The implementations used to produce the graphs do not use p binary trees

for probing, as suggested by the authors. A binary probe of the sub-sequence

is used instead. Asymptotically, this does not make a difference®3.

13The authors use an O(plogn) running time for the probe in the analysis.

43

5.7 Frederickson’s algorithm

Frederickson’s|7] is by far the most complex of the existing algorithms for
the MinMax-problem. The approach is to search an n x n matrix of all
possible solutions, gradually refining both the search interval and the probing
procedure.

To illustrate, consider the sequence S =[23612245] from Chapter 3.

A, the matrix of possible solutions looks like this:

x\y||[1|2]| 3| 4| 5| 6| 7| 8
12511121416 | 20 | 25
2(0[3| 9(10]12| 14|18 23
31100 6] 7| 9|11]15]20
411010 0] 1| 3| 5| 9|14
5(0(0f 0 0] 2| 4| 8|13
600} 0 0| O 2| 6|11
71010 O] O Of O] 4] 9
8110101 O] O O] O] O

Table 4: The elements are monotonically increasing from left to right and

from bottom to top.

The element A, , of the matrix represents the cost of the interval contain-
ing elements x through y in the sequence, i.e. W, +...+W,. The elements of
the matrix can be calculated in constant time once the prefix-sum-array, 7" as
described in Chapter 3, is computed. A, = T'[y] — T[x — 1], where T'[0] = 0,
thus it is not necessary to hold the matrix in a data-structure. Since the cost
of all sub-sequences are in A, the optimal solution to the MinMax-problem
must also be there.

The key to Frederickson’s algorithm is the monotonic properties of A. For
any sub-matrix of A, every element is equal to or less than the upper right
element, and every element is equal to or greater than lower left element.

This means that during a parametric search, an entire sub-matrix may be

44

discarded just by examining two elements of it. If the value of the upper
right element of the sub-matrix is lower than the lower boundary on the
optimal solution, or if the lower left element of the sub-matrix is greater
than the upper boundary on the optimal solution, none of the values in the
sub-matrix can be the optimal solution.

The algorithm works by splitting the matrix into sub-matrices, narrowing
the search interval by finding the median of the matrices and probing it, and
then discarding all matrices whose values fall outside the search interval.
These steps are repeated until the size of the remaining matrices is 1 x 1.
Only one distinct value will remain, and this is the optimal solution.

An elaborate dynamically improving probing scheme is developed to
achieve linear running time. The key observation is that if a sub-matrix
defined by two coordinates (z1,y1) and (xs,ys) does not contain any ele-
ments whose values are in the current search range, all probes with values in
the search range on the sequence from z; to x5 will produce the same par-
titioning. Frederickson calls this a dead interval, and develops an algorithm
which gradually discovers more and more of these intervals. A dead inter-
val can be probed in constant time by first applying a linear pre-processing

procedure.

Asymptotic running time

Frederickson develops several algorithms, each one building on and improving
on the previous. His first uses a linear probe, and has an asymptotic running
time of O(nlogn). The next algorithm uses his special probe, looking for
dead intervals once, and have a running time of O(nloglogn). Only these
two algorithms are implemented in this work. By discovering dead intervals
throughout the execution of the algorithm, the running time is improved
to O(nlog*n).'* Finally, linear running time is acheived through further

improvements to the probing strategy.

4The function log* k is the iterated logarithm of k, defined by log* 1 = log*2 = 1 and
log*k =1 +log*[log k] for k > 2.

45

Time in microseconds, n=65536

1.3e+4-06 T | (1) T T T T I
—— Frederickson O(n log n) FAN

L, 1.2e406 | -———- Frederickson O(n log log n) N T
= 298 N / \
S 11406 |- YN N
<] N // A
§ 1e+06 — //\\v//,——~\\// > 7
2 900000 - . .
.8 800000 7
£ 700000 - -

500000 ! ! ! ! ! ! ! ! !

0 4000 8000 12000 16000 20000
p

Figure 14: The performance of variants of the Frederickson algorithm.

Performance

As seen in Figure 14, the O(nlogn) algorithm actually runs faster than
the O(nloglogn) algorithm. The reason for this is that Fredrickson’s im-
provements introduces large constant factors. Much more time is spent on
improving the probe, than what is gained.

Figure 15 illustrates that when n is high enough, the effect of the im-

provement is starting to show.

46

Time in seconds

Time in seconds, n=1048576

1(1) — Frede{"i(:ksonlo n lolg n) | I | g
- Frederlckson/“QEn log log n)

L JANNY) —
8 -7 —
i —
: —
i —
; —
X —
2 1 | 1 I ! ' :

10000 15000 20000 25000 30000 35000 40000 45000 50000
b

Figure 15: Performance of Frederickson for large problems.

47

6 Experimental results

In this chapter, we present tests of the algorithms from Chapter 6. They are
tested on various problems, followed by a discussion of the results.

The algorithms are implemented in the C programming language, and
tested on an Intel Celeron processor running at 768 MHz. See Chapter 1.4
for a detailed description of the conditions under which these experiments

where conducted.

6.1 Previously published experiments

The authors of the PA-algorithm published experiments|15] on load balancing

of various matrices from the linear programming domain?s.

The sequences
to partition were obtained by multiplying the constraint matrix from a linear
problem with its transpose, and collapsing the rows of the resulting matrix.
Table 5 lists some properties'® of the test-problems.

Table 6 lists the execution time in microseconds, of the algorithms from
Chapter 5, when applied to the problems from Table 5. All implementations
include the optimizations outlined in Chapter 5.

In general, Pinar and Aykanat found that PA was the fastest algorithm,
closely followed by bisection, and that Nicol and OM were magnitudes slower.
Of the algorithms in Table 6, Nicol, Bisection and PA seem to outperform the
rest. Compared to the result of Pinar and Aykanat’s experiments'”, Nicol’s
algorithm performs surprisingly well. It would seem like Pinar and Aykanat
used a version of Nicol which was not optimized.

As expected, PA and MS are very fast for small p’s, but the running time
for these algorithms increase drastically for large p. Aykanat, together with
Kutluca and Kurc later published an article on image-space decomposition

[10] in which Nicol’s algorithm is recommended, with no mention of the PA-

15The problems are available at ftp://dollar.biz.uiowa.edu/pub/yyye/testprob/lp/
16For ken-11 and ken-18, the number of non-zeros is not the same as Pinar and Aykanat

worked with. The reason for this is unknown, but the effect should be minimal.
"The “1D Decomposition” part of Table 2 in their paper.

48

Matrix: | Rows/Cols: | Total nonzero: | Min pr. row | Max pr. row:
co9 10789 249205 1 707
cq9 9278 221590 1 702
cre-b 9648 398806 1 904
cre-d 8926 372266 1 845
ken-11 14694 82454 2 243
ken-18 105127 609271 2 649
mod?2 34774 604910 1 941
nl 7039 105089 1 361
pilot87 2030 238624 1 738
world 34506 582064 1 972

Table 5: Properties of sparse test-matrices.

algorithm. Frederickson and HNC, the asymptotically fastest algorithms,
both have large constant factors which causes poor performance on relatively

small problems.

6.2 Experiments on larger problems

The experiments of Pinar and Aykanat only considered very limited values of
p, since their main focus was on applying the algorithms on load-balancing
and not many SMP-machines with more than 256 processors existed. Cluster-

f'® has since emerged to make higher values of p

technology, such as Beowul
more interesting'®.

When increasing the value of p, at some point the optimal solution will
be the value of most expensive element in the sequence. For every p larger
than this, the optimal solution remains the same, since it must be larger

than the value of the most expensive element, but decreases with p. For this

Bhttp: //www.beowulf.org
19Gince communication between processors on these clusters are generally very expen-

sive, minimizing communication cost is of special interest.

49

reason, the experiments are terminated before p reaches n. The problems
in Figure 16 and 17 are randomly generated, with numbers in the ranges
[4248,2147438944] and [0, 9999] respectively.

Time in microseconds, n=65536

— Bid _

. 4.5e+06 ~ ;i) 0 Manne
5= de+06 ¢ 4 0 e Bigection -

s__ a0
S 3.5e+06 ¢ ic0 S OM _
§ 3et+-06f¢+~ i/ meme- gﬁ%l -
é 2.5e+06 ~ < /0 Frederickson]
k= 2e+-06 -
g 1.5e+06 —
- 1le+06 =
500000 -
0 Loz e | Rttt Rl b Ml
0 5000 10000 15000 20000 25000 30000 35000 40000

p

Figure 16: Performance-comparison of all implemented algorithms.

As seen in Figure 16, the algorithms based on moving delimiters all per-
form poorly when p increases. The exception is Nicol, which from it’s asymp-
totic running time should be much worse off. The modifications of the orig-
inal algorithm are described on Page 32. When p is larger than n/logn
(4096 in this case), bisection switches from the O(plogn) probe to the linear
probe(see Chapter 3), and after this, the running time is independent of p.
Frederickson is slightly worse off than Nicol and bisection only because of
high constant factors, but will probably outperform bisection if the numbers
of the sequence are very large(log Wiez > n).

Although not clear from Figure 16, the running time of HNC grows slower
than that of PA and MS, and outperforms them on this problem when p >
15000.

30

Figure 17 illustrates the performance of the three algorithms which are

best suited for very large n and p, applied to a sequence of 1048576 elements.

To avoid overflow-problems, the randomly generated numbers of the sequence

are between 0 and 10000, which benefits all three algorithms, especially bi-

section which beats Nicol with a narrow margin.

12
10
T
g 8
[}
%
=
<5}
5 4
=
2

Time in seconds, n—=1048576

T
— Bisection
----»Nicol .- .-
SRR Frec‘le’ricksdn\ L
I I I
50000 100000 150000
|

200000

250000

Figure 17: Performance-comparison of the algorithms best suited for large n

and p.

ol

Problem P Wopt MS Nicol Bis. PA oM HNC Fred.
16 | 15628 7257 1614 1567 1438 1037 29909 7159

32 7871 7399 1650 1614 1682 1758 55816 7445

co9 64 3969 8313 2182 1789 2326 4072 82630 12121
128 2039 14241 2312 2130 3879 17205 132942 14518

256 1106 40716 3520 2707 12953 74971 197363 10497

16 | 13930 5715 1391 1322 1362 853 28107 11448

32 6980 5996 1437 1239 1405 1209 46961 10814

cq9 64 3512 6729 1748 1582 1509 3245 67917 14358
128 1792 9662 2226 1986 3087 11429 113369 13357

256 993 44646 3541 2448 11466 79649 162215 14137

16 | 24988 6258 1350 1393 1343 694 30510 18336

32 12564 6442 1671 1487 1356 994 62457 10153

cre-b 64 6306 6873 1745 1676 1530 2386 76977 17349
128 3194 9228 2260 1974 2079 5867 132784 19306

256 1714 24076 3610 2504 3193 14736 195534 26152

16 | 23371 5688 1337 1251 1211 593 32731 22702

32 | 11707 5645 1474 1319 1222 873 56598 9737

cre-d 64 5917 6167 1400 1499 1289 1897 79788 9498
128 2992 8361 2349 1892 1873 5954 118246 24097

256 1612 23349 2919 2372 2496 22023 186628 21728

16 5164 9494 2134 2142 2064 1300 38506 24159

32 2607 10448 2379 2287 2462 2962 85760 11130

ken-11 64 1305 11142 2594 2467 2641 5340 114972 30863
128 688 21369 3296 2914 7611 30855 176352 52220

256 345 35763 3963 3630 11541 75132 271674 9256

16 | 38145 77857 15828 17021 15997 9911 559253 43643

32 | 19083 79122 17167 16012 17015 12641 1188495 155864

ken-18 64 9605 86243 17881 17729 19295 27136 1520262 190719
128 4805 93609 18812 17535 23146 54566 2358062 280242

256 2489 | 195032 21880 19333 73966 303528 3594671 125709

16 37831 24362 5258 5170 5053 3058 165927 34385

32 | 18925 24887 5373 5469 5194 3228 334317 31837

mod2 64 9473 26580 5889 5929 5425 4017 442380 33778
128 4746 27659 7169 6656 5984 6153 669967 29718

256 2393 36780 10678 8225 10264 33394 1011793 42636

16 6591 4049 870 988 898 619 18602 5719

32 3312 4288 1122 1086 985 1251 49886 4546

nl 64 1681 5333 1216 1095 1414 2779 53578 5044
128 862 7919 1950 1538 2346 11603 98579 6193

256 469 44029 3110 1886 7301 67706 136854 9898

16 | 15085 907 228 219 190 146 2770 3571

32 7595 1101 348 302 267 349 6885 5877

pilot87 64 3840 1346 408 421 406 1024 9612 3823
128 1977 2435 825 691 872 3612 16871 4568

256 1065 7106 1307 760 3209 14852 32969 8776

16 | 36403 24329 5197 5239 5038 3042 168786 27003

32 | 18220 25441 5698 5373 5184 3217 365711 43133

world 64 9124 26584 6100 6046 5821 4717 460257 35887
128 4584 30120 7040 6774 7127 12697 690922 37719

256 2299 36537 8626 8064 9200 31917 1046781 43357

Table 6: Execution time in microseconds

92

7 Conclusion

In Chapter 5, many of the discussed algorithms were improved by using the
bounds on the optimal solution, described in Chapter 2. Although this can
not be shown to have an effect on the asymptotic running time, experiments
proved that optimizations based on these bounds can make a significant
difference.

Which algorithm to choose depends very much on the properties of the
problem. n, p and the size and distribution of the numbers in the sequence
makes the performance of the different algorithms vary. For p < 64, Nicol,
PA and bisection run fastest. When p grows beyond this, Nicol and bisec-
tion outperforms PA. While Frederickson and HNC have the best asymptotic
running times, very high constant factors makes these algorithms unattrac-
tive in practice. For practical experiments, bisection seems to perform best,
and is easy to implement(as opposed to Frederickson), although it will have
problems on extremely high numbers.

The bisection-algorithm was changed to produce perfect accuracy when
working with real numbers, without increasing the asymptotic running time.
Over several experiments, this algorithm acheived the best performance. Fu-
ture research may find a better asymptotic running time than O(n?plogn)
which was developed in this work, by exploiting the properties of the search
space.

Anily and Federgruen|1] lists several problems similar to the MinMax-
problem. It would be interesting trying to apply the optimizations developed

in this work to algorithms for solving related problems.

a3

References

1]

2]

3]

4]

[5]

[6]

[7]

18]

19]

[10]

S. ANILY AND A. FEDERGRUEN, Structured partitioning problems, Op-
erations Research, 13 (1991), pp. 130-149.

R. BECKER, Y. PERL, AND S. SCHACH, An efficient algorithm for

min-maz tree partition, Quaestiones Inform., (1982), pp. 27-30.

R. I. BECKER AND Y. PERL, The shifting algorithm technique for the
partitioning of trees, Disc. App. Math., (1995), pp. 15-34.

S. H. BOKHARI, Partitioning problems in parallel, pipelined, and dis-
tributed computing, IEEE Trans. Comput., 37 (1988), pp. 48-57.

S. H. BOKHARI AND M. A. IQBAL, Efficient algorithms for a class
of partitioning problems, Tech. Rep. ICASE Report No. 90-49, NASA
Langley Research Center, 1990.

H.-A. CHO1 AND B. NARAHARI, Algorithms for mapping and parti-

tioning chain structured parallel computations, in Proc. Intl. Conf. on
Parallel Processing, vol. 1, 1991, pp. 625-628.

G. N. FREDERICKSON, Optimal parametric search algorithms in trees

1 Tree partitioning, 1992.

M. R. GAREY AND D. S. JOHNSON, Complexity results for multiproces-
sor scheduling under resource constraints, SIAM J. Comput., 4 (1975),
pp. 397-411.

Y. HAN, B. NARAHARI, AND H.-A. CHOI, Mapping a chain task to

chained processors, Information Processing Letters, 44 (1992), pp. 141—
148.

T. M. K. HUSEYIN KUTLUCA AND C. AYKANAT, Image-space decom-
position algorithms for sort-first parallel volume rendering of unstruc-

tured grids, in The Journal of Supercomputing, 2000, pp. 15(1):51-93.

o4

[11] M. A. IQBAL, Approzimate algorithms for partitioning and assignment
problems, Int. J. Parallel Programming, (1991), pp. 341-361.

[12] F. MANNE AND T. S@REVIK, Optimal partitioning of sequences, J. Alg.,
19 (1995), pp. 235-249.

[13] D. M. NicoL, Rectilinear partitioning of irreqular data parallel compu-
tations, J. Par. Dist. Comp., (1994), pp. 119-134.

[14] B. OLsTAD AND F. MANNE, Efficient partitioning of sequences, IEEE
Trans. Comput., 44 (1995), pp. 1322-1326.

[15] A. PINAR AND C. AYKANAT, Sparse matriz decomposition with optimal
load balance, in Proceedings of the 4th International Conference on High

Performance Computing, 1997, pp. 224-229.

35

